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1 Formal definitions for the probabilistic generative models

Readers are referred to the Supplementary Matlab code (available from https://github.
com/drbenvincent/BayesCovertAttention) to see how the models can be implemented
and used in practice to generate the predictions shown in the paper.

1.1 Uncued tasks

The core part of the model is that for each trial t, a display type D

t

is sampled from a prior
distribution p (see the next 2 subsections). This display type then influences an observer’s
noisy sensory observations x. Noise is assumed to be normally distributed, with no bias, with
target and distractor variances of �2

T

and �2
D

, respectively.

D

t

⇠ Categorical(p) (1)

x

n,t ⇠
8><>:

Normal(1,�2
T

) if n = D

t

Normal(0,�2
D

) if n , D

t

(2)

1.1.1 Uncued localisation

For localisation, the target will occur in 1 of N locations, so assuming no spatial biases the
prior over display types is

p = [

Nz    }|    {
1
N

, . . . , 1
N

]. (3)
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1.1.2 Uncued yes/no task

In the yes/no task, there are N possible target present displays, and 1 target absent display. The
target is present at a rate prev, and when it is present, the vector s describes the spatial prior
over N stimulus locations. Therefore the prior over display types is

p = [
Nz                     }|                     {

prev.s1, . . . , prev.s
N

,

P(absent)z    }|    {
1 � prev]. (4)

1.2 Cued tasks

Noisy sensory observations are the result of the display type as shown above in Equation 2.
However, the display types are drawn from a prior distribution p

t

for each trial which depends
upon the cue location (see next 2 subsections).

D

t

⇠ Categorical(p
t

) (5)

This prior distribution is a function of the cued location and the cue validity v. The cue appears
uniformly at each of N spatial locations.

c

t

⇠ Categorical(

Nz    }|    {
1
N

, . . . , 1
N

) (6)

1.2.1 Cued localisation

For the cued localisation task, the target will be in the cued location with a probability equal
to the cue validity v. When the cue is invalid, the target has an equal chance of being in all
non-cued locations. The prior over display types is determined by the cue location c

t

p

n,t =
8><>:
v if n = c

t

(1 � v)/(N � 1) if n , c

t

.
(7)

1.2.2 Cued yes/no

For the cued yes/no task, the prior over display types is fairly straightforward. Assuming a
target prevalence rate of 50%, then regardless of the cue location, there is a 0.5 probability of a
target absent (D

t

= N +1) display type. The probability of a present, valid cue trial (D

t

= c

t

) is
the product of the target prevalence and cue validity, 0.5v. The probability of a target present,
invalid cue trial (D

t

belonging to the set (n , c

t

) ^ (n  N )) is 0.5(1�v)
N�1 . This is summarised by

the following deterministic prior over display types
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p

n,t =

8>>>><>>>>:

0.5v if n = c

t

0.5(1�v)
N�1 if (n , c

t

) ^ (n  N )
0.5 if n = N + 1.

(8)

2 Algorithmic implementation of the models

Detailed instructions are provided with the Matlab code at https://github.com/drbenvincent/
BayesCovertAttention. Two separate implementations are provided. The first is a Monte
Carlo approach, similar to what has been used in previous approaches, however the novel aspect
of this code is that it does not require the decision rule to be derived.

The second uses a Markov Chain Monte Carlo (MCMC) approach. While this is slower to
evaluate, and the code is slightly more complex, it is much more general. Readers interested
in this approach are directed to the instruction manual for the JAGS MCMC software package
(Plummer, 2003), and the books by Lee and Wagenmakers (2014) and (Lunn et al., 2012).

3 The 3-stage process of calculating model predictions

Supplementary Figure 1 demonstrates the 3-step process where we use the generative graphical
model to calculate predicted performance of an optimal observer (for the uncued localisation
task). The process is to first generate simulated data where we know the true target locations
and have some simulated internal observations x (Supplementary Figure 1a). The second step
is to see how well the optimal observer can then infer the display type given those noisy ob-
servations, but without knowledge of the true target location (Supplementary Figure 1b). The
third step is to convert this inferred distribution of belief of the true location to a decision of
the most likely display type D̃ (Supplementary Figure 1c). The performance of the observer is
then simply the proportion of trials in which the estimated display type is equal to the actual
display type (state of the world) which generated the noisy observations.
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Step 1: Generate simulated data Step 2: Infer display type Step 3: Decision rule

P (D,x|p, �2
T , �2

D) P (D|x,p, �2
T , �2

D) D̃t = arg max
n

(P (Dt = n|x,p, �2
T , �2

D))
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Supplementary Figure 1: A 3-step procedure was used to generate predictions for all of the models
in the paper, demonstrated here with the uncued localisation task. The first step is to generate a dataset
of simulated target locations and corresponding noisy observations. The second step is to infer what
the display type was, given the simulated sensory observations. The final step is to translate an inferred
belief (the posterior distribution from step 2) to a decision. This is demonstrated for one trial as simply
responding to the most probable (posterior mode). Overall this process could be called ‘parameter
recovery’ in that we know the true display type (from step 1), but how well can an optimal observer infer
this if it has to be inferred? The performance is simply the proportion of trials where the inferred display
type D̃ equals the true display type D.
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