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Information Theory and Perception: The
Role of Constraints, and What Do We
Maximize Information About?

Roland Baddeley, Benjamin Vincent, and David Attewell

Because human and nonhuman primates are highly visual animals, an
important step in understanding how their brains operate is to under-
stand how they see: that is, how they transform the structured, colored,
and dynamic pattern of light surrounding them into knowledge about
the world they live in. Over the last twenty years, a number of problems
associated with understanding vision have used information-theoretic
techniques to help us gain insight into perception (Shannon 1948). This
chapter will describe, in a biased way, one particular strand of this work:
how information theory has been used to shed light on the processes and
representations present at the earliest stages of vision.

There are three reasons why early vision is a particularly good system
to which to apply information theoretic concepts. First, we know a lot
about what it does, even if we don’t always know precisely why it does
it. The pioneering physiological work of Hubel and Wiesel (1962) gave
us a good grasp of the basic properties of the representations of early
vision, and since then, the neurons in the earliest and largest cortical area
involved in vision, V1 (sometimes also known as the striate cortex or
area 17), have probably been more studied than those in any other part
of the brain. These cells are sensitive to certain parameters of the local
pattern of light arriving at the areas of the retina they are interested in,
such as color, orientation, and motion. The parameter values to which
a given cell is sensitive is known as its receptive field (Lennie 2003a).
Using increasingly sophisticated methods, such cell properties have been
not only qualitatively but also quantitatively described. In addition to
our good physiological understanding of early vision, the fact that
displaying simple but very well-controlled visual stimuli is relatively
easy means that early vision has been studied using the methods of
psychophysics more than any other sense. As a result of all this intensive
work. we have a lot of data. both physiological and psvchophvsical. with
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which we can compare the predictions of any information theory—
inspired model of early vision.

The second reason why early vision is amenable to study using infor-
mation theory is that it is possible to generate estimates of its “natural”
input. Information theory calculations often require estimates of the
statistics of the signal to be transmitted (Simoncelli and Olshausen 2001)
and, for vision, these estimates can be made from natural images and
videos. This can be done in more or less sophisticated ways, from simply
approximating input in terms of some “representative natural images”
taken from the web, to approaches that take into account eye movements
(Rucci, Edelman, and Wray 2000; Rucci and Casile 2005), the animal’s
environmental niche (Warrant 1999), and possibly the effects of the
observer’s motion through the environment. Importantly, the logistic and
theoretical problems associated with making approximations to the
input probability distribution for vision are not insurmountable. In con-
trast, applying information theory approaches to problems in the cogni-
tive domain, for example, may be more challenging due to the difficulty
of defining precisely the input to this system.

The last reason why an information theoretical approach may
be appropriate is that at least at the earliest stages of vision (e.g.,
the transmission of information from the eye to the cortex), there
exist rather severe bottlenecks for information transmission (discussed
shortly). A system that is under severe constraints about how much
information can be transmitted is more likely to be, in some sense,
efficient. Although this is not so for all stages of early vision, at least
some parts of the system have, on the face of it, more information to
transmit than would be trivially possible without some sort of efficient
(in terms of information theory) recoding. Comparing representations
of the world observed in early vision with various optimal information
theory-based representations has, therefore, at least some chance
of success.

The rest of this chapter will therefore begin with a brief description
of some pertinent properties of early vision. We will then describe the
basic approach that has been employed when using information theary—
based ideas to gain a better understanding of early visual representations,
and illustrate this approach with three basic models. These models all
share a number of assumptions about the nature of early visual repre-
sentations and all use approximations to the visual input based on sam-
pling from natural images. They differ, however, in that they propose
that different constraints are important in understanding early percep-
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tion. Last, we will give a very brief overview of some problems with the
approach, together with some potentially interesting new directions to
pursue.

The Nature of the Early Visual System

The main modeling effort that we will describe is concentrated on under-
standing the earliest stages of visual information processing. These are
possibly the most intensively studied of all brain functions, and any short
summary is bound to smooth over many potentially important details.
However, some background is required to understand the subsequent
modeling.

Early visual processing can be thought of as having three stages. In
the first stage, the light in the retina is detected (via rod and cone cells),
and the resulting signal is normalized. In the second stage, the signal is
recoded, and transmitted from the retina to the cortex. This information
is transmitted first using cells known as retinal ganglion cells, and then
via a subcortical area called the lateral geniculate nucleus (LGN), whose
exact function, despite a large number of theories, is not well understood
(Derrington 2000). We will therefore ignore it. In the third and final
stage, the information arrives in the first cortical area (V1), and is rep-
resented by a vastly greater number of cells than previously, which make
a number of properties (or “features”) of the local visual input explicit
rather than implicit. In most layers of V1, the visual input is represented
in terms of the presence of orientated edges, with cells firing at a high
rate when presented with an edge or line within its local “receptive field,”
and not when no such edge or line is present.

On average, we point our eyes to a new location three times a second,
and the information inherent in the light coming from the new direction
has to be communicated to higher levels of the cortex. The basic problem
the retina faces during the first stage of early vision is that it has to deal
(given time to adapt) with light intensities that vary over nine orders of
magnitude. This is beyond the dynamic range of all the subsequent pro-
cessing stages. So, after detecting the light, the light level at every location
is transformed with a transform that is not badly approximated over the
most important range by a logarithm (Valeton and van Norren 1983).
This is then followed by luminance adaptation; the detected light level
is normalized by subtracting the average (log) light level in the local
region over the recent past from the signal. This processing means that
even with very large changes in the illuminant (e.g., the sun going behind



a cloud), we can still see. This normalized version of the input needs then
to be transmitted to later stages for further processing.

Though the eyes are (obviously) at the front of the head, the first
cortical area involved in vision (V1) is at the back of the head. This
means that the information has to be transmitted over a comparatively
long distance (for the cortex). Given that there are very large numbers
of rods and cones, it is unfeasible to send this information as a set of
raw image measurements. Instead, the image is compressed by squeezing
it through a narrow bottleneck of only ~1 million retinal ganglion
cells per eye, which form the optic nerves. Each of these neurons is in
charge of representing only a small portion of the visual field.
Each neuron represents the difference between the sum of two local
luminance averages of different spatial extents. This kind of sensitivity
profile is known as a center-surround receptive field organization, and
the transformed representation it produces is transmitted, via retinal
ganglion cells and the LGN, to the early visual cortex (V1). This center-
surround representation is fairly fundamental in vision and is one of
the features that we would like to explain using information theory
arguments.

The earliest representations of the image are not orientation-sensitive.
Only when the visual information reaches V1 can the representation used
by the majority of cells be thought of as coding for the orientation of
local edge or line segments. The neurons in most layers of V1 are also
sensitive to many other aspects of the visual input (motion, color, stereo,
etc.), but it is this basic local edge-detection property that most modeling
has attempted to explain.

This, then, gives us the basic phenomena to be explained: (1) a local
center-surround representation of the input coming from the retina to
the cortex, and (2) a representation in terms of local edges in the earliest
area of the cortex. How can information theory help us here?

The Basic Logic of the Approach

The three models we next present all have the same basic structure. They
all propose that these early visual representations maximize the amount
of information transmitted about the world, subject to some set of con-
straints. They all agree that it is important to have a realistic model of
the input distribution (the images we normally see), rather than taking
as our signal random variations of light. They also all agree that repre-
sentations should be thought of in terms of linear filters: modeling recep-

tive fields as weighted sums of the pixels of the represented images they
are to process. The one way that they differ is in the proposed nature of
the constraints that prevent the trivial solution of maximizing informa-
tion by simply having an output representation identical to the input.

Minimizing the Number of Units or the Amount of Time to Code:
Principal Components Analysis

This model is based on the following assumptions. The first is that the
input to the system—the probability distribution of natural images that
are usually viewed by the visual system—can be well approximated in
terms of a multivariate Gaussian (normal) distribution. This is equivalent
to saying that if we know the means of the image intensities and the
correlation between image measurements made at different locations by
the photoreceptors, averaged across a large set of representative images,
then we know everything that is to be known about the distribution—
there is no additional non-Gaussian structure. This assumption is not in
fact true (images do have such non-Gaussian structure; it’s what stops
them all from looking a bit like clouds), but it does have the virtue of
simplicity. .

The second assumption is that the noise on each of the receptors in
the retina is Gaussian and independent between receptors.

The third and last assumption, and one that requires more explana-
tion, is that the main constraint on information transmission is the
limited number of linear filters available to represent the images. This is
counterintuitive, as there are in fact far more neurons in V1 than cells
in the retina. There are three ways to justify this assumption.

The first justification, which we will call the basic Gaussian justifica-
tion, is based on its simplicity: given these assumptions, the optimal way
of representing the input is in terms of the principal components of the
input measurements. This is a well-understood statistical technique that
provides us with the opportunity of an analytical understanding of the
optimal solution, rather than simply a numerically optimized representa-
tion. Even if certain assumptions are not met (such as not having an
obvious constraint on the number of output units), knowing the basic
Gaussian solution will potentially be informative.

The second justification, which we call the Hebbian learning justifica-
tion, comes about because of a connection between the optimal solution
(the principal components solution), and the result of a number of
models of low-level visual development. The well-known Hebb rule
(Hebb 1949) specifies how the synapses (weight parameters) in a neural



network should be changed depending on experience. That is, it states
that neurons that fire together should wire together, and is usually inter-
preted in terms of a weight update rule (the rate of change of a weight)
based on the correlation between two units.

Provided that a neural network is linear, and has some means to make
sure that all units represent unrelated features, if it is trained using a
number of variants of Hebb’s rule, then it will converge when the weights
span the same space as the principal components. Because Hebb’s rule
is a very popular model of visual development, knowing the optimum
for this scenario is of interest.

The last reason is more subtle, and we call it the Time Limited Per-
formance Justification. This is based on work by Korutcheva, Parga and
Nadal (1997). They analyzed a binary system in terms of maximizing
information transmission when presented with Gaussian input. A remark-
able property of such a binary system is that as the ratio between the
number of output and input units increases, binary processing becomes
equivalent to linear processing; it is equivalent to principal components
analysis. There are far more cells in V1 (output units) than there are cells
in the retina (input units). Neurons communicate with spikes, so, when
observed over a very short time window, neurons can either spike or
not—they are effectively binary. This means that even if neurons in V1
are not well approximated by linear filters, as long as there are a lot of
them (and there are), and we consider their behavior only over very short
time scales (so they can either fire or not), if they are maximizing infor-
mation with their input, then this will be equivalent to the whole system
operating as if it were performing principal components analysis. Note
that this statement does not make any predictions about the receptive
fields observed physiologically or about psychophysical performance
when subjects have a large amount of time, but does make strong predic-
tions about the system’s performance when operating over very short
timescales (less than 30 ms).

This model leads us to a hypothesis: the representation of an image
in early vision is in terms of its principal components. How do we go
about testing this idea? One possible method is as follows: (1) Collect a
set of images representative of the kind of world that vision is used to
process. (2) Randomly sample local patches (say windowed 16 x 16-pixel
patches) from these images as if eye movements were being made to
them. (3) Calculate the principal components of these patches. (4)
Compare these with what is known about the physiology or psychophys-
ics of early vision. This is the procedure that Baddeley and Hancock

Figure 10.1

The first fifteen local principal components of a large collection of natural scenes based on
work reported in Baddeley and Hancock 1991. The components are presented in terms of
the amount of image variance they account for, with the component at the top left account-
ing for the most and components on the top row explaining more than lower rows. As
can be seen, the early components (e.g., components 2-7) could be thought of as edge or
line detectors of various types (responding optimally when stimulated with a line). Despite
this, they do not resemble in detail receptive fields found in V1 (or retinal ganglion cell
receptive fields),

(1991) followed, and the resulting two-dimensional filters are shown in
figure 10.1.

How do these filters compare to what is known about physiology?
Though there is some resemblance (see components 2-7), many of the
components are a poor match. More importantly, although components
2-7 qualitatively could be described as edge detectors, quantitatively they
are far from a good match to what is known about receptive fields. This
limitation is important, because developmental models such as that of
Linsker (1986) converge to the principle components of the input. The
approximate “edge detector-like” properties of these models have been
argued to be evidence, but the actual properties of even the components
that do resemble receptive fields are quantitatively rather different (see
later discussion for models that do make more accurate predictions).

This leaves the last suggestion: that the entire system, when given only
very short periods of time, appears to resemble the principal components.
To understand how to test this idea, a few words on what determines



the nature of the components are in order. It turns out that there are
three important factors that determine the nature of the components of
natural images.

First, the power spectra of the input images are important. Principle
components attempt to capture as much of the variance as possible, and
the power spectra of the images tells us where this variance is. It is a
relatively robust characteristic of natural images, from a wide range of
sources, that the power at a given frequency is inversely proportional to
its frequency (Field 1987): the vast majority of the power in natural
images is at low frequencies. This means that the components also have
to be tuned to low spatial frequencies in order to capture input
variance.

The second determinant of the components is the nature of the window
used when sampling local image patches. Though this determinant has
nothing to do with image statistics, it can have a large effect on the
derived components. Simply sampling square patches from images always
means that any structure will be aligned to the sampling window. There-
fore, to avoid artificially imposing structure on components, we win-
dowed the samples with a Gaussian approximation before subsequent
processing. This leaves the last characteristic: how anisotropic the image
statistics of the world are. In particular, how rapidly does the correlation
between image intensity measurements decay as a function of angle?

In artificial images, the correlation decays can be equal for all direc-
tions, but in naturalistic images, particularly those of wide open land-
scapes, the correlation decays considerably quicker in the vertical
direction compared to the horizontal (Baddeley 1996). This difference
results in the structure of vertical and horizontal components being dif-
ferent. In particular, two components can be thought of as line detectors:
in figure 10.1, components 4 and 6 respond optimally when a light or
dark line at the appropriate orientation is placed in the center. These
two components are not simply rotations of each other, but have slightly
different structure. If the components provide a good description of thé
whole system operating at very short intervals, a match to this difference
in structure should be measurable psychophysically. In fact, this proved
to be true. In some extremely labor-intensive experiments, in which
subjects had to detect a single differently orientated line in the presence
of a large number of other lines, Foster and Ward (1991) found that at
very short presentation times (40 ms) subjects’ performance was well
summarized by two line-detection mechanisms operating. Figure 10.2
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Figure 10.2

Does the orientation tuning of components 4 and 6 in any way match that estimated with
short time presentation psychophysics? Shown is the response of these two components to
an optimal bar rotated through 180 degrees (thin line), and for comparison the orientation
tuning inferred experimentally by psychophysical methods for very short time presentations
(thick line), based on the work of Foster and Ward (1991). As can be seen, though the
components do not match individual receptive fields, the match of the system’s orientation
sensitivity is nearly perfect.

shows the response of these two mechanisms as a function of orientation,
together with the orientation tuning of the two line-detecting principle
components. As can be seen, the match is essentially perfect.

To conclude this section on principal components-based models:
models that propose that information about images is maximized, and
that the main constraint on communication is the number of filters to
represent the image, result in a model that essentially extracts the prin-
cipal components of images. The early components vaguely quantita-
tively resemble what is known about early receptive fields, but qualitatively
they are not a good match. When people have only extremely short
amounts of time to view things, then aspects of the system as a whole
do appear to be consistent with information maximization. However,
we very rarely only have 40 ms to view something. Given longer viewing
times, human performance changes (improves), and the use of a binary
code is no longer justified. Therefore, the principal components model
is not, in general, a satisfactory model of human performance.



Beginning to Make the Model More Realistic: Metabolic Constraints
on Firing Rate (or Sparsity)

That there are more neurons in V1 than receptors in the retina forms a
specific coding challenge (Lewicki and Sejnowski 1998), and this abun-
dance of V1 neurons is problematic for the approach described previ-
ously. Thus, to respond to this challenge, we are led to a second model
in which instead of constraining the number of neurons representing the
image, we place a constraint on their level of activity.

There are a number of justifications for this. By far the simplest is a
metabolic argument: given that there are a vast number of neurons
in V1 (the largest for any cortical area), they will have a significant
cost in terms of energy consumption. As well as minimizing energy
consumption, simply to minimize the amount of food we need to
find and eat, highly metabolically active neural tissue also presents
both resource transport and heat dissipation problems (Falk 1992;
Corrard 1999). The brain is a highly metabolically active organ (Rolfe
and Brown 1997), and any representation that required less energy
would be favored by evolution, as long as it did not hurt performance
too much.

There are a number of factors that determine the energy consumption
of a piece of the brain (Attewell and Laughlin 2001); indeed, simply
maintaining neurons and using synapses uses resources (discussed
shortly). Here, however, we reduce energy consumption by minimizing
the activity of the neurons; that is, we minimize their average firing rate.
The idea is simple: rather than simply looking for the representation that
captures as much information about the image as possible, we simultane-
ously try to minimize the amount of energy used to represent images,
where the main form of energy use we concentrate on is the energy used
to fire a neuron. If we again use a Gaussian approximation to the infor-
mation, this optimization is very simple to implement in terms of a neural
network learning rule. This was done first in Fyfe and Baddeley (1995),
where we used a neural network to extract the filters with very peaked
output distributions. In these simulations, we optimized a statistical
quantity called kurtosis rather than minimizing the absolute output, but
the effect is very similar. We, however, calculated only the first three
optimal filters, and the nature of the full solution was, therefore, not
completely clear. Our work was followed by that of two groups (Harpur
and Prager 1996; Olshausen and Field 1996), again both using neural
networks, and although the algorithm proposed by Harpur and Prager
has computational advantages over both ours and the Olshausen and

Figure 10.3

“Edge detectors™ as derived by simultaneously optimizing the information transmitted
about images, while minimizing the average firing rate of the cells. As can be seen, the
result of such an optimization is a large number of local, oriented edge detectors that
provide a good qualitative match to the receptive fields found in V1. If motion is also taken
into account, as shown by van Hateren (1983), the match is quantitative as well.

Field algorithm (one of their methods does not require a prewhitening
filter), the results from the Olshausen and Field model were presented
particularly nicely (and appeared in Nature), so the result is usually
attributed to them. The basic result, the optimal receptive fields, when
optimized to maximize information transmission while minimizing
energy consumption, is shown in figure 10.3.

This, although not obvious to someone not working in the field, was
a major breakthrough. Unlike the principal components, which only very
approximately resembled the receptive fields found in V1, when the fact
that real-world images move was taken into account, the modeled recep-
tive fields provided both a good qualitative and quantitative account of
those found in V1 (van Hateren and van der Schaaf 1998).

Given this match, are there any other characteristics of V1 that lend
weight to this interpretation? One prediction concerns the probability
distribution of firing rates of cells when stimulated with natural scenes
(rather than the artificial stimuli more commonly used). It can be shown
that, given a constraint on the average firing rate, the neuron firing rate
distribution that maximizes the output entropy (and hence potential
information transmission), is an exponential distribution (Lennie 2003b).
This prediction is easy to test, and in Baddeley et al. (1997) we carried
out the simplest experiment: we recorded the distribution of firing rates
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The firing rate distributions of cells in two cortical areas (V1, and IT, an area involved in
object recognition), when these cells are processing nature videos. In the noiseless limit,
given a constraint of the average firing rate, the cells will be transmitting the maximum
amount of information when these distributions are exponential (or, because the y-axis is
logarithmic, these plots form straight lines). As can be seen, over an order of magnitude
range of time, the spike count distributions are indeed well approximated by an exponential
distribution lending support to the idea that cells in V1 (and other areas) are maximizing
their information transmission while minimizing their average firing rate. Based on Bad-
deley et al. 1997.

in cells in V1 while playing those videos judged to be representative of
the animals’ natural environment. The results are shown in figure 10.4.
As can be seen, the distributions are very well fit by exponential distribu-
tions, and though there are systematic differences, when the fact that the
system is not completely noise-free is taken into account, the fit is essen-
tially perfect.

Before we move onto the final model, one point is worth mentioning.
Though we have here interpreted the derived receptive fields in terms of
minimizing energy consumption, this is far from the most popular inter-
pretation. More usually, they are interpreted in terms of maximizing
sparsity. Despite one common measure of sparsity being equivalent to
minimizing energy consumption, we are not fans of this interpretation.
Sparsity traditionally makes sense when you have a system that has only
a very few active elements (in this case, neurons), while the majority are
silent. At first, this appears an appropriate definition: neurons are in fact
either far more on, or far more off, than predicted if their outputs wer€
Gaussian-distributed. In fact, though, when averaged over even short

periods, neurons are hardly ever silent, and compared to distributions
with the same firing rate, their distribution is about as varied as it could
possibly be, showing very little bimodality as would be predicted by a
silent versus nonsilent interpretation. In a way, both interpretations state
that neurons should minimize their average activity. But although mini-
mizing metabolic activity unambiguously specifies how to quantify this,
sparsity has a rather large number of definitions (which, though they
give very similar results, is less satisfying), and does not predict that the
optimal distribution will be exponentially distributed, as observed, but
simply very long-tailed.

Minimizing Synaptic Rather than Firing Rate Energy Consumption
This, then, leaves us with a reasonably satisfying explanation of the
receptive field in V1, but we appear to have missed a stage. The retinal
ganglion cells do constitute an information bottleneck, and it would seem
plausible that their receptive fields could be explained in a similar frame-
work. Their center-surround receptive fields, however, do not resemble
those found when minimizing average firing rate. Based on previous
research (Vincent and Baddeley 2003; Vincent et al. 2005), our working
hypothesis is to assume that because the information transmission bottle-
neck operating is so extreme, no meaningful energy saving can be made
by constraining the firing rate. In contrast, as shown in figure 10.5, rather
large energy consumption savings can be made by minimizing the energy
used by synapses (which is quantified by the sum of the filter
coefficients).

Constraints on synaptic energy consumption, which uses up a signifi-
cant proportion of the entire brain’s energy budget, were explored by
Vincent and Baddeley (2003). When a cost function that takes into
account synaptic (rather than firing rate) energy use is maximized, the
optimal representations are very different, and are shown in figure 10.6.
Quantitatively (and qualitatively), these representations provide a very
good characterization of the observed receptive fields of retinal ganglion
cells.

Furthermore, the explicitly energy-saving approach was applied to
simultaneously calculate the optimal receptive fields for a simplified two-
layer retinocortical visual system (Vincent et al. 2005). Although it is
commonly assumed that the oriented V1 receptive fields derive appropri-
ate input from multiple center-surround neurons, as far as we are aware,
this was the first study to confirm that such an arrangement is in fact an
optimal solution to something. But in order to do this, it was insufficient
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Large saving of the synaptic budget can be made at relatively little cost in terms of the
amount of information transmitted. Shown are the results of six filter systems, each opti-
mized with a different “budget” to be spent on synapses, where a budget of one corre-
sponds to the optimal unconstrained solution. As can be seen, a 70 percent saving of
metabolic cost associated with synapses can be made without severely affecting information
transmission. When there is no constraint, the network simply spans the space of the
principal components {and does not match observed physiology). In contrast, when only
20 to 40 percent of the energy is spent on synapses, the receptive fields in contrast form
localized receptive fields. Examples of these are shown in figure 10.6. Based on Vincent
and Baddeley 2003.

to simply maximize information; metabolic costs also had to be con-
sidered.

In summary, maximizing information about the natural input has
provided a reasonable way of approaching the nature of the early cortical
representations. If we assume that the main constraint is simply the
number of units (or that the system is operating over a very short time,
so neuronal outputs can be treated as binary), the optimal solution is the
principal components of the input. This does not account for the form
of any observed early receptive fields, but does explain short presentation
time psychophysical performance. If we allow a larger number of neurons
to represent an image, but minimize their average firing rate, then the
optimal receptive fields provide a very good account of those measured

Figure 10.6 .
The optimal receptive fields of a system simultaneously maximizing information transmis-
sion while minimizing the amount of energy used on synaptic transmission. As can be seen,
the receptive fields have a local center-surround organization, and the parameters of these
receptive fields provide a good match to the properties of retinal ganglion cells. Based on
Vincent and Baddeley 2003. :

in V1. If, however, the constraint is placed on the metabolic cost of the
synapses, then the optimal representation provides a good match to the
receptive fields of the retinal ganglion cells.

Problems and Where Next?

The results presented in this discussion provide at least a potentially
interesting framework for understanding early perception, but there is
one very important theoretical worry that needs to be more directly
addressed if we are to make progress. The worry is that we have treated
the input as the pattern of light that arrives at the eye. It is easy to forget
when studying vision; animals fundamentally do not care about light,
but about the world that generated that light. This means that maximiz-
ing the information about the light is a sensible strategy only if all aspects
of the variation of light are equally informative about behaviorally
important aspects of the world. This is very unlikely to be true.
Unfortunately, approaches based on maximizing the information
about the behaviorally important aspects of the world require estimates
not of the statistics of natural images (which is easy), but the statistics
of the behaviorally relevant aspects of the world that the animal needs
to know about. It is the information about the world that should be
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Figure 10.7

Information about the world is more important than information about light. Although
at an early stage of research, we have been attempting to decompose images into variation
that is relevant to properties of the world, and variation that is not informative. This figure
shows part of the process, where, using parallel illumination of a scene, we can decompose
it into the contribution due to reflectance, and the contribution due to illumination. The
three panels to the left show: a natural image (a), which can be regarded as the product
of the reflectance signal (image b), and illumination noise (image c). Panel (d) shows the
power spectra of natural signal and noise images, averaged over horizontal and vertical
orientations. As can be seen, the majority of variation in natural images is due to variations
in illumination and does not tell us about the properties of the world. The spatial frequency
spectra of illumination variation and reflectance variation are also very similar, meaning
that it cannot be removed by simple linear filtering. This result is robust across a
number of illumination environments. Representations that maximize the information
about the indirectly observed reflectance will have to perform processing on the images
(we are using Bayesian techniques) rather than simply recode them in order to maximize
information.

maximized, not the information about the light generated by that world.
This presents two difficulties: specifying what aspects of the world are
behaviorally relevant, and quantifying them. Despite these technical dif-
ficulties and a number of false starts, we believe we are making progress
on one particularly simple aspect of the world: the surface reflectance
properties of objects in the world.

This chapter is not the place to describe our latest information-
theoretical measurements, but figure 10.7 shows the most successful
method we have developed to measure, in naturalistic settings, not only
the characteristics of images, but also of the illumination and objects’
surface reflectance properties that are associated with those images. This
is just an example, but we believe that making models that maximize the
information presented not about images, but about the behaviorally
important aspects of those images, will be required if we are to make
further progress in understanding how and why we have the early rep-
resentations of the world that we do.
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