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Is the early visual system optimised to be energy efficient?
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Abstract

This paper demonstrates that a representation which balances natural image encoding with metabolic
energy efficiency shows many similarities to the neural organisation observed in the early visual system.
A simple linear model was constructed that learned receptive fields by optimally balancing informa-
tion coding with metabolic expense for an entire visual field in a 2-stage visual system. The input
to the model consists of a space variant retinal array of photoreceptors. Natural images were then
encoded through a bottleneck such as the retinal ganglion cells that form the optic nerve. The nat-
ural images represented by the activity of retinal ganglion cells were then encoded by many more
‘cortical’ cells in a divergent representation. Qualitatively, the system learnt by optimising informa-
tion coding and energy expenditure and matched (1) the centre surround organisation of retinal
ganglion cells; (2) the Gabor-like organisation of cortical simple cells; (3) higher densities of re-
ceptive fields in the fovea decreasing in the periphery; (4) smaller receptive fields in the fovea in-
creasing in size in the periphery; (5) spacing ratios of retinal cells; and (6) aspect ratios of cortical
receptive fields. Quantitatively, however, there are small but significant discrepancies between den-
sity slopes which may be accounted for by taking optic blur and fixation induced image statistics
into account. In addition, the model cortical receptive fields are more broadly tuned than biological
cortical neurons; this may be accounted for by the computational limitation of modelling a relatively
low number of neurons. This paper shows that retinal receptive field properties can be understood
in terms of balancing coding with synaptic energy expenditure and cortical receptive fields with firing
rate energy expenditure, and provides a sound biological explanation of why ‘sparse’ distributions are
beneficial.
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Introduction

After many decades of experimental work, the visual system is now very well characterised,
giving us a good idea about what happens in the early stages of visual processing. However,
at times it is unclear as to why certain features of the visual system are as they are, and so
theoretical work has attempted to address this issue. One way to do this is to assume that
aspects of the visual system are optimised in some way; predictions are then made based on
this optimisation and are compared to physiological data.

One particularly successful approach at explaining the receptive field organisation of neu-
rons in the primary visual cortex has been sparse coding (Olshausen & Field 1996). In this
approach, it is hypothesised that these neurons are optimsed to encode natural images whilst
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having a zero-peaked distribution (one type of sparsity) of firing rates whereby the majority
of neurons are inactive, but a few have high firing rates. This type of distribution can also
be considered as energy efficient in terms of minimising the average firing rate of neurons
(Baddeley 1996). In fact, many monotonically increasing cost functions tend to promote
zero-peaked distributions.

This concept of metabolic energy efficiency was extended in our previous work, which con-
sidered the role of synaptic energy usage in encoding natural images (Vincent & Baddeley
2003). In the same way that monotonically increasing cost functions of firing rates in
Olshausen & Field (1996) leads to zero-peaked firing rate distributions, the linear synaptic
cost function leads to a zero peaked distribution of synaptic connection strengths. Encoding
natural images under a metabolically based synaptic energy budget showed: (1) substantial
metabolic saving can be made whilst maintaining information encoding capacity; (2) the
optimal receptive fields had close quantitative similarity to the classic centre-surround type
as observed in retinal ganglion cells; (3) the change from bandpass to lowpass characteristics
in different light levels can be explained; (4) that details of the mosaic of receptive fields can
be explained. These results, combined with the metabolic interpretation of sparse coding,
suggest that energy efficient coding could be an important explanation of why many features
of the visual system are as they are.

In this paper, the energy efficient coding hypothesis is extended in two important ways.
Firstly, instead of using small patches of natural images, we use an entire (albeit scaled
down) visual field. This visual field is sampled by a space variant retina like distribution of
photoreceptors, with a sampling density that is high in the fovea and decreases with retinal
eccentricity. This allows the expansion of the energy efficient explanation of local receptive
field properties (Vincent & Baddeley 2003) to more global properties of the visual field.
Examples of the global properties include how the optimal receptive field size changes across
retinal eccentricity and how the optimal sampling densities change across the visual field.
Secondly, energy efficient coding is extended from retinal image coding to investigate how
cortical receptive fields that are energy efficient in terms of firing rates can be constructed
from synaptically efficient centre-surround receptive fields.

In order to test whether the energy efficient coding hypothesis can account for local and
global properties of retinal and cortical receptive fields, a simple linear model is constructed
(see Figure 1). This model allows the calculation of receptive fields that are optimised to
encode natural image information under a metabolic cost scheme where the cost of synaptic
activity and firing rates can be fully manipulated. Here, we do not fully explore different
combinations of costs in the retinal and cortical stages but this is the focus of future work.

In the retinal stage, a cost that increases in proportion to synaptic activity is imposed and
from the results of previous work (Vincent & Baddeley 2003), we predict that the optimal
organisation will be centre surround.

In the cortical stage, a cost proportional to the firing rate of neurons is imposed and from
sparse coding, and our own previous unpublished investigations, we predict that a Gabor-like
organisation will be optimal. The intuitive explanation of why a zero-peaked distribution of
firing rates leads to oriented bar detectors is more established. The natural image input can
be seen as a mixture of some ‘fundamental causes’ of that image and the oriented bars are
simply an estimate of what these causes are given the assumption that any given image is
caused by only few of all possible causes (Olshausen & Field 1996; Bell & Sejnowski 1997).

In addition to testing these predictions of the optimal spatial structure the model will allow
us to test if (1) the same spatial organisations are optimal with a space variant input array;
(2) how the receptive fields are distributed across the visual field; and (3) if cortical receptive
fields can be learnt from a set of centre surround ‘building blocks’.
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Figure 1. The basic structure of the model. The input is a space variant array of 1400 photoreceptors which sample
natural images. The first stage, representation of the visual input which converges to 200 retinal ganglion cells. The
second stage is a divergent representation of 800 cortical neurons which goes some way in reflecting the number
of cells in the cortex but is only 800 due to computational limitations. All neurons are fully interconnected to all
units in the previous layer, and it is the pattern of connections from a given unit to those in the previous layer which
defines that units receptive field.

Methods
Space variant visual field

The prevailing method of presenting images in image coding approaches is to use a space
invariant, regular grid of pixels. In this paper we take the space variant approach in order
to simulate a basic retina (see Bolduc & Levine (1998)). A log-polar model is used which
calculates a set of positions of photoreceptors, (see Figure 1 (left)). A uniformly spaced set
of 50 radial angles are determined and a set of distances are calculated where d = 160e",
where n is a vector of values increasing from —30 to 0 in steps of 0.15. This defines a set
of photoreceptor locations in log-polar coordinates which are then converted from polar co-
ordinates to cartesian and then rounded such that photoreceptor locations correspond to a
specific pixel location. After this rounding, duplicate sets of points with identical distances
were removed. The final set of photoreceptors (with 50 radial values and 28 distance values)
can then sample from a standard image with a randomly chosen fixation position within
the image, yielding the space variant retinal representation. This procedure results in a sim-
ple model of the photoreceptor distribution but resembles physiology in that the density
decreases sharply with distance from the fovea (see Figure 7). We assume photoreceptor
size is constant (1 pixel) across the whole retina for simplicity. This has implications for the
very centre of the fovea as only a single photoreceptor can occupy a single pixel location.
This results in a small (7 pixel radius) region of maximal (uniform) photoreceptor density
in the very centre of the fovea. Outside of this region, however, the photoreceptor spacing
decreases with eccentricity. This assumed uniform size in photoreceptors is not too gross an
assumption as physiological measurements of the New World monkey show that the cone
inner segment diameter is approximately constant across the retina but with a slight decrease
in size (factor of 2) in the central 5° (da Costa & Hoko¢ 2000).

Natural image stimuli

The initial images, from which the space variant images are derived, are based upon a dataset
of natural spatio-chromatic images taken in a Ugandan rainforest (Troscianko et al. 2003).
This dataset of 244 images is calibrated so that the three channels correspond to L, M and
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S cone types (Parraga et al. 2002), then luminance was calculated as L+M. From this, 204
samples are taken from each image from random positions, subject to the photoreceptor
array being inside the image boundary, resulting in a dataset of 49,776 space variant natural
image samples. The photoreceptor array spans a diameter of 320 pixels and the source
natural images had a resolution of 1600 by 1200 pixels. The mean and variance of each
photoreceptor (over the entire dataset) was normalized to minimise any sampling artifacts,
for example the top half of the images were brighter on average than the bottom half due to
presence of the sky.

The basic model

In order to calculate the optimal filters to encode natural images under a synaptic energy
constraint, a standard linear model is used (Baldi & Hornik 1995). This model consists of a
set of inputs x that are fully connected by synapses W to a set of output units y. The images
are presented to the inputs and propagate through the weights (receptive fields) to result
in a set of output unit activations. The output activity (analogous to firing rates) essentially
encodes the inputs. Then the network is ‘tested’ to ensure that it has accurately encoded the
inputs. This is done by predicting the input from the set of output activations and measuring
the difference between the input and the predicted input. This results in an error signal which
is then used to update the receptive fields by a learning rule so as to more accurately encode
the inputs.

This linear model is used once for the first (retinal) stage and a second time for the second
(cortical) stage. The retinal stage receives luminance input from the photoreceptor array and
passes its output, as firing rates, onto the cortical stage.

Enforcing synaptic and firing rate efficiency

We define a cost function such that optimisation of the model results in receptive fields that
optimally encode inputs subject to the costs of synaptic activity and firing rates. We start by
defining the cost function of the model

1 2
E= Ee + & S2synapse + B rate €

where (%ez) is the encoding error over the whole input ensemble, e = X — W'Y, Qqynapse iS
the cost of synaptic activity and Q4 is the cost of firing rates. The relative importance of
the two costs are set with & and g, this way investigation of optimal coding under a range of
different conditions is possible. If « = 0 and 8 > 0, then firing rate efficiency is important
and oriented bar type filters are predicted to emerge. Conversely, if« > 0 and 8 = 0, synaptic
efficiency is important and centre surround type filters are predicted to emerge.

The synaptic energy efficiency is dealt with slightly differently than in Vincent and Baddeley
(2003). Previously a ‘hard’ constraint was imposed where a given synaptic energy budget was
defined and the model could not exceed it. As this hard constraint was applied to individual
receptive fields, it promoted similarity amongst them in terms of size for example. Here a
‘soft” weight constraint is used where the importance of synaptic efficiency («) is defined
relative to the other costs (encoding information and firing rates). This soft constraint allows
synaptic resources to be placed anywhere amongst the receptive fields and so it allows them
to be of different sizes.
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To implement these soft constraints with linear cost functions, we set the synapse and
firing rate costs as follows:

stnapse = 2:|\N| (2)
Qrate = 2:|Y| (3)

where | o | indicates the absolute value.

The model is optimised to find the receptive fields W such that it minimises the error
function E. The optimal set of outputs y are chosen to minimise E using gradient descent
then the receptive fields are updated using gradient descent. This procedure of calculating
output activations and updating weights is iterated with a decreasing learning rate until E
is minimised which is assumed to happen when the RMS change in W over 500 iterations
decreases below a threshold of 0.001.

In the first stage, synapses incur a cost but firing rates are metabolically ‘free’ and this is
implemented by setting « = 0.1 and g8 = 0. In the second stage, this is swapped such that
firing rates incur a cost and synapses are ‘free’ by setting =0 and g = 0.1.

Analysis

In order to qualitatively compare the models’ receptive fields with physiological data, they
were fitted with paramatised mathematical functions. We choose to use the popular difference
of Gaussians to fit center surround receptive fields and an elliptical, oriented Gabor model
to fit the bar-type receptive fields (see the Introduction and Discussion for an explanation of
why center surround and bar detector type receptive fields emerge).

For the difference of Gaussian model, the receptive field sensitivity at retinal location (X, y)
is

DOG(x,y) = k. exp [ — (d%/2r2)] — k exp [ — (d?/2r2)] (4)

where

d= \/(x — )2+ (y —¢y)2 (5)

and the six parameters are: location of receptive field centre (cy,cy), centre radius
(r¢) and sensitivity (k;) and corresponding surround radius (r;) and sensitivity (k).
The radii correspond to the standard deviations of the Gaussians. A set of 12 mod-
els were fitted to each receptive field with each model having a range of different initial
parameters.

For the elliptical, oriented Gabor model the receptive fields sensitivity at retinal receptive
field location is (X, y) (Movellan 2005).

Gabor(x, y) = cos(27 (ux + vy) + P).K exp(—m(a®X? + b?Y?)) (6)
where
X = (x —cyx)cos(d) + (y —cy)sind @)
Y =—(X—cx)sing + (y —cy) cosé (8)
u= Fcosé 9)

v=Fsind (10)
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This Gabor model has 8 parameters, K scales the magnitude of the Gaussian envelope,
(a, b) scales the two axis of the Gaussian envelope which is oriented at the angle 6 in radians.
(cx, Xy) determines the centre position, P is the phase of the sinusoid and F~1 is its spatial
frequency (in cycles/pixel).

Approximately 300 Gabor models were fitted to each cortical receptive field, each starting
with different initial parameters that span the range of sensible values. Then, the Gabor fit
which explained most of the receptive fields variance (highest R? value) was chosen as the
final fit.

From the final sets of Gabor fits, we calculated the half-magnitude orientation

bandwidth.
b(. /1092
(PW%) )

012 = 2tan™
1/2 =
Each cortical receptive field was classified either as lowpass or bandpass; those whose
response to a mean image intensity (i.e., sensitivity at zero spatial frequency) was less than
half the peak response were classed as bandpass. 41% of cells satisfied this criteria and their
spatial frequency bandwidths were calculated in octaves as

I:1/2 = Ing(Fmax/Fmin) (12)

where Fnin and Fnax are the lowest and highest, respectively, spatial frequencies resulting in
half the peak response.

Results
Retinal ganglion results

Our previous work established that centre surround organisation is the optimal spatial ar-
rangement to encode natural images under a synaptic energy budget (Vincent & Baddeley
2003). The present study replicates this finding (equation 1, « = 0.1, 8 = 0) and shows that
the result is robust under the new space variant approach (see Figure 2).

To further investigate the centre surround receptive fields in the model and to compare
this to the physiology, the raw receptive field data were fitted with difference of Gaussian
models (see Methods). It was found that this difference of Gaussian model was effective at
describing the data, with a median R? of 0.75 (7 out of the 200 receptive fields had R? < 0.5
and were removed from further analysis).

Figure 3 shows qualitatively that the receptive fields in the fovea are small but increase
in size out toward the periphery. Figure 4a shows that this increase in receptive field size is
linear with retinal eccentricity such that the entire visual field is tiled by receptive fields. To
test this quantitatively, the spacing ratio is calculated; this is the distance between nearest
neighbour receptive field centres normalised by the standard deviation of the centre radii
(Devries & Baylor 1997). A spacing ratio of 1 means that the 1o profiles of two cells just
touch and corresponds to equal sampling of visual space. In physiology, mean spacing ratio
for different ganglion cell classes range from 1.18 to 1.23 (see Devries & Baylor 1997, their
Table I11). Our data, however, shows spacing ratios change as a function of retinal eccentricity
ranging from ~ 0.5 to ~ 3; see Figure 4b. Thus, the fovea is oversampled due to receptive
field overlap and the periphery is undersampled. Whether this trend exists in the physiology
remains to be seen.
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Figure 2. Some retinal ganglion receptive fields. All show clear centre surround organisation despite some residual
but very low sensitivity to photoreceptors in other areas of the visual field. In order to display as an image, the raw

data of sensitivities at each photoreceptor location was interpolated to get receptive field sensitivities for a uniform
grid.

Figure 4c shows the total number of synaptic connections that each centre surround neuron
has with the photoreceptors. A synaptic connection was classed as present if the magnitude
of that connection was greater than 5% of the peak connection magnitude for a given retinal
neuron. The plot shows that, contrary to the physiology, there are more photoreceptors
per ganglion cell in the fovea than in the periphery. We have already seen in Figure 4a that
receptive fields are in fact smaller in the fovea, despite more connections, but this discrepancy
is accounted for by the closer receptor spacing in the fovea.

Figure 4d shows that synapse related metabolic cost of retinal receptive fields is high in
the fovea but decreases as a power law with eccentricity, so retinal ganglion cells in the fovea
cost more energy than peripheral ones, by approximately a factor of 2.

Cortical results

The cortical stage calculated the optimal receptive fields which balance natural image en-
coding with costs associated with firing rates (Equation 1, « = 0, 8 = 0.1). Unlike sparse
coding and independent component analysis, the cortical receptive fields are built up from
combinations of centre surround receptive fields of the retinal layer of the model. Figure 5
shows resemblance to the well known Gabor-like oriented bar detectors. These plots show
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Figure 3. The receptive field centres over the space variant retina. The size of receptive field centres and their
positions are shown by circles, derived from difference of Gaussian fits and the total visual field is shown by the
large dotted circle. Fits that explain less then 50% of the variance (R% < 0.5) are indicated by the + sign. Note that
the radius of the circles correspond to the standard deviation of the receptive field centre sizes thus are smaller than
the total spatial extent of the receptive field.

differences to the types of receptive fields seen from sparse coding and ICA in that they
appear much more broadly tuned.

To investigate the cortical receptive fields and to compare them to physiological measures
and other models of simple cells, all receptive fields were parameterised with an elliptical
Gabor model. These Gabor models were good fits to the data, having a median R? value of
0.71 (80 of 800 fits had R? < 0.5 and were excluded from further analysis).

Just as with the centre surround receptive fields, the cortical receptive field sizes in-
crease with eccentricity. However, there is much more variability so a range of differ-
ent receptive field sizes (calculated as the average of major and minor axes of the el-
liptical Gabor) exist at any eccentricity (see Figure 6a). The model aspect ratios show
a close match to the distribution found in the physiology: see Figure 6b (physiological
data from Parker and Hawken (1988) with the same assumption as in van Hateren and
van der Schaaf (1998) that the width of the receptive field envelope is three times the
width of the central lobe). Analysis of the orientation bandwidths (Figure 6c¢) is interest-
ing the range of values in the physiology (data from Parker and Hawken (1988) their Figure
3a) is from 0° to around 100° but the model has a bimodal distribution of orientation
bandwidths. Half seem to follow the distribution in physiology but the rest have a greater
bandwidth based around 120°. The spatial frequency bandwidths of the model (shown in
Figure 6d) are greater than that seen in physiology (data from de Valois et al. (1982) their
Figure 5).
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Figure 4. Analysis of retinal receptive field properties. The size of the central regions of receptive fields increase
linearly with retinal eccentricity (a). The spacing ratio alters depending upon eccentricity, there being more overlap
in the fovea and less overlap in the periphery (b). The connectivity of photoreceptors as a function of eccentricity
is shown in terms of number of connections (above 5% peak sensitivity) and decreases as a power law (c). This
does not mean that foveal receptive fields are larger as (a) shows an approximately linear increase in receptive field
centre size with eccentricity. Foveal receptive fields are more synaptically costly, with cost decreasing exponentially
with eccentricity (d). Power law fits are shown with standard error curves (dashed lines) obtained by bootstrap
resampling.

Convergence

The photoreceptor distribution is defined a priori in the space variant model (see Methods),
but the manner in which the visual information is represented is a property of this and
balancing coding of the input statistics with metabolic energy expenditure. Under these
conditions, there was an excellent qualitative match. Both the retinal and cortical layers
place much more (and smaller) receptive fields in the fovea of the visual field whilst the
periphery is represented by a much lower number of neurons. Figure 7 shows that both
retinal ganglion cells and cortical cells are up to three orders of magnitude more dense in
the fovea compared to the periphery. The inset of Figure 7 shows this much higher foveal
density.

Examining the slopes of the power law fits to receptive field density as a function of
eccentricity shows small but significant differences from physiology (see Table I). The slope
of this power law fit gets slightly shallower from receptors to retinal to cortical cells, showing
that for each successive stage, the fovea is relatively under-represented as compared to the
periphery from the previous representation. This is the opposite trend to physiology, where
even though the neural explanation is unclear, the consensus is that ‘cortical magnification’,
where the cortex over-represents the fovea relative to the periphery, does exist (Wassle et al.
1989, 1990; Azzoprdi & Cowly 1993).
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Table 1. Power law fit parameters of the data shown in Figure 7.
The (distance, density) data is fitted (in the log-log domain) with
power laws such that density = multiple.distance®P°ne"t, Standard
deviations obtained by bootstrap resampling.

Exponent Multiple
Photoreceptors —2.15+0.01 81.93+3.16
Centre surround —1.81+0.02 3.65+0.22
Cortical —1.77 £0.07 5256 +12.1

Discussion
Receptive field predictions

The model presented learns receptive fields by finding the optimal balance between encoding
natural images and metabolic expense. In the model retina, the synapses incur a cost and in
the cortex, it is the firing rates that incur a cost. This was chosen because it is what previous
results suggest is important (Olshausen & Field 1996; Vincent & Baddeley 2003), future
work will focus on examining different cost combinations in different parts of the visual
system.

Figure 5. Some cortical Gabor-like receptive fields. The raw receptive field data was interpolated as in Figure 2 for
plotting as an image.
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Figure 6. Analysis of cortical receptive field properties. Receptive field size (averages of major and minor axis)
increase with retinal eccentricity (a). In (b), (c), (d) physiological data is shown in histograms and the model results
are plotted as curves. The aspect ratio (length/width) of the model is a close match to the physiological data (b).
The orientation and frequency bandwidths are shown in (c) and (d), respectively.

The retinal receptive fields have centre surround organisation, being very small in the fovea
and increasing in size out toward the periphery. The spacing ratio is a similar value to that
seen in physiology but the model predicts the spacing ratio may change depending on retinal
eccentricity.

The model cortex includes a firing rate constraint where cost is proportional to firing rate
which is equivalent to a cost function used in sparse coding (Olshausen & Field 1996; Harpur
1997). The cost functions are such that they promote a zero-peaked distribution of firing
rates. The cortical receptive fields form Gabor-like bar detectors, and these also increase in
size out toward the periphery. We find that the aspect ratios of model receptive fields fits the
distribution found in physiology, but a number of other properties differ from physiology.
Around half of the receptive fields have a similar orientation bandwidth as cortical neurons,
but the remainder have a much greater orientation bandwidth. In addition, the frequency
bandwidth of the model receptive fields is greater than cortical cells in biology. These two
deviations show that the model cortical receptive fields are more broadly tuned than the
results from sparse coding, ICA and the physiological data. We suggest two reasons why
this may be so. Firstly, the spatial organisation of the cortical receptive fields is limited
by being the weighted sum of the retinal centre-surround receptive fields. Although this is
exactly the situation in biology, the low number of neurons in the model limits the spatial
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Figure 7. Analysis of magnification factors. Here, the densities of photoreceptors and centre-surround and cortical
receptive fields are compared as a function of retinal eccentricity. The photoreceptors show a small region of uniform
density within the central 10 pixels. Straight lines represent mean power law fits (from eccentricity 10 to 160) and
shaded regions are standard deviations of the fits obtained by bootstrap resampling. Inset shows the spatial locations
of the photoreceptors, retinal and cortical cells demonstrating the much higher densities in the fovea.

fineness, so more retinal receptive fields would allow for finer, more narrowly tuned, cortical
receptive fields. Secondly, the number of cortical neurons was restricted to 800 due to limited
computational resources. Because of this, the receptive fields are probably more broadly
tuned in order to capture the highest-variance grosser features of the natural images. We
predict that the cortical receptive fields would become more finely tuned and thus have
lower orientation and frequency bandwidths given increased numbers of cortical neurons in
the model.

Convergence/magnification factors

In our previous work, we tested the predictions of synaptically efficient coding at various
eccentricities by altering the convergence ratio of photoreceptors to ganglion cells (Vincent
& Baddeley 2003). This showed that receptive field size decreases as the number of ganglion
cellsincrease (i.e., more foveal locations), with the receptive fields consisting of direct, one-to-
one connections where the number of ganglion cells is equal to the number of photoreceptors.
These predictions are interesting and valid, but a stronger test of the predictive ability of
energy efficient coding would be to measure the optimal receptive field placement over an
entire space variant visual field as we do here.

Quialitatively, the model matches the physiology very well. Both in the retina and the
cortex, the fovea is up to 3 orders of magnitude more densely sampled than in the
periphery.

Quantitatively there were small but significant differences to physiology. A greater area
in the cortex is devoted to foveal than peripheral regions. In the model, we observe a
slight shallowing of the density function from photoreceptors to retinal to cortical cells.
This means that the model cortex does have many more receptive fields in the fovea but
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would require even more to reflect the physiological measurements. Although the locus of
this over-representation is unclear, be it the retina (Wéssle et al. 1989, 1990) or the cortex
(Azzoprdi & Cowey 1993) it does exist.

An initial prediction would be that if the variance was identical across inputs, then the
density of any subsequent stage would reflect the density of inputs. We did not find this, and
we argue that it is the image statistics combined with the space variant sampling array which
leads to this slight discrepancy. The autocorrelation function of natural images means that
closer regions (i.e., the dense foveal photoreceptor sampling) will be more correlated than
the less dense sampling of the periphery. This causes the model, which is concerned with
information and thus variance, to place slightly more receptive fields in the periphery relative
to the fovea. This is believed to be the cause of the slight relative over-representation of the
periphery in each stage of the model.

The model predictions are highly dependent upon the input statistics, and even though
we have gone to lengths to capture ‘natural’ image statistics, we cannot be sure that it truly
reflects the statistics met by an organism in the natural world. We believe the following three
factors could lead to different model predictions including the foveal over-representation as
seen in the cortex:

e We did not take increased optical blurring in the periphery into account (Wang &
Ciuffreda 2004). This may be relevant as it would broaden the autocorrelation func-
tion of peripheral photoreceptors more than those in the fovea. This would decrease
the input variance of the peripheral photoreceptors relative to the fovea and thus induce
more resources into the fovea.

e Fixation behaviour of humans is found to have a correlate with the presence of edges
(Tatler et al. 2005). If this were taken into account then the input statistics would alter
such that edges occur more in the fovea (fixation position) and more dense sampling of
the cortex is likely.

e With independent component analysis it was found that taking the time domain into
account resulted in much better fits to the physiology (van Hateren & Ruderman 1998).
Extending the energy efficient coding model to the spatiotemporal domain would cer-
tainly alter the optimal receptive fields.

Comparison to sparse coding and independent components analysis approaches

Previous studies have shown that the oriented bar type receptive fields are optimal in terms
of encoding natural images when a ‘sparse’ zero-peaked distribution is enforced (Olshausen
& Field 1996). A zero-peaked firing rate distribution simply means that at any given time the
majority of neurons are inactive or weakly active whilst a low proportion are strongly active.
In addition, independent component analysis makes a very similar prediction: oriented bar
type receptive fields are optimal (Bell & Sejnowski 1997; van Hateren & Ruderman 1998).
These studies elude to a fairly robust understanding of simple cells in the primary visual
cortex (or at least their linear characteristics see (Olshausen & Field 2004)), but there are
certain unresolved issues of interpretation with both sparse coding and ICA.

A sparse code or a zero-peaked distribution of firing rates has (in itself) no intrinsic ap-
peal over any other code and so some would question the justification of sparsity other than
the fact that its optimal receptive fields are similar to simple-cells. ICA certainly is a prin-
cipled approach (Hyvarinen & Hoyer 2001); various linear or non-linear processing steps
may increase the independence of neural responses but true independence seems to be an
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unreachable goal. Nevertheless, ICA is a very interesting approach and increasing
independence does seem to be a sensible coding strategy.

From the results conducted thus far, we propose that ‘energy efficient coding’ provides a
solid framework with which to understand the why of early visual processing. It shows specif-
ically that a zero-peaked distribution of firing rates is desirable to minimise the metabolic
requirements of encoding natural images (see here and Baddeley (1996)). Similarly, energy
efficient coding shows that a zero-peaked distribution of synapses minimises costs associ-
ated with synaptic activity and results in realistic centre surround receptive fields (here and
Vincent & Baddeley (2003)). The justification of metabolic energy efficiency is clear from the
evolutionary and physiological viewpoints in addition to predicting many features of centre
surround and cortical processing.

Conclusions

We have investigated the optimal receptive field organisation of a two-layer visual sys-
tem which balances natural image coding with metabolic energy efficiency. Energy effi-
ciency is obviously important biologically and goes a long way to explain why the early
visual system is arranged how it is. Analysis of the optimal receptive fields shows that
although there are some deviations from physiology, many properties of the early vi-
sual system are captured. Not only can the centre-surround and oriented-bar type or-
ganisation be explained, but also the distribution of receptive fields is captured fairly
well.

The model had a limited number of neurons because of computational constraints,
and we believe that this accounts for why the cortical receptive fields are more broadly
tuned than real cortical neurons. Creating a larger scale model could result in more nar-
rowly tuned receptive fields. In addition, we expect that some of the models foveal under-
representation may be a result of not capturing the full statistics of fixated natural scenes.
Thus, a greater understanding of how eye fixation positions affect the image statistics could
lead to improved matches between the energy efficient coding approach and physiological
observations.

These results add to a growing body of work which recognises the importance of the
brains biophysical nature in determining its structure and functioning (Laughlin & Sejnowski
2003). For example, the approach of minimum wiring volume can account for many struc-
tural aspects of the brain such as cortical folds (Essen 1997), topographic map organisation
(Koulakov & Chklovski 2001) and neural branching patterns (Mitchison 1992; Chklovskii
2000). Concurrently, a number of labs have studied the impact of metabolic energy expendi-
ture upon neural function. Energy considerations explain, for example, why it can be optimal
that fewer neurons are active than is predicted from an information coding perspective alone
(Levy & Baxter 1996) and is exemplified by visual cortical receptive fields (Olshausen &
Field 1996; Harpur 1997). In addition, the patterns of spikes emitted from retinal ganglion
cells can be viewed as optimal when noise and costs are considered (Balasubramanian &
Berry 2002). The nervous system is one of the most energy hungry of all organs (Rolfe &
Brown 1997) and a detailed characterisation of energy consumption in neural tissue (such
as Attwell and Laughlin (2001)) is vital, providing empirical data upon which theoretical
studies can be based.

In conclusion, we argue that the energy efficient coding approach moves the understanding
of the early visual system forward as it provides a real biologically-based justification for sparse
coding in the cortex and retinal ganglion cells.
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