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Abstract

Recent work suggests that the visual system may represent early visual information in an energy efficient manner [Nature 381

(1996); Nature, 381 (1996) 607; Neural Comput. 3 (2001) 799; Curr. Opin. Neurobiol. 11 (2001) 475]. This paper applies the idea of

energy efficient representations to understand retinal processing, and provides evidence that centre surround processing observed is

efficient in terms of minimizing synaptic activity. In particular, it is shown that receptive fields at different retinal eccentricities and at

different levels of noise, can be understood in terms of maximizing the transmission of visual information given a constraint on total

synaptic strengths and hence energy consumption.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The human brain forms only 2% of body mass, but

uses 20% of all blood oxygen (Rolfe & Brown, 1997).

With such metabolically expensive tissue, it seems rea-

sonable that minimising energy consumption has shaped

the evolution of neural processing of the brain (Badde-

ley, 1996; Baddeley et al., 1997; Laughlin, 1999; Levy &

Baxter, 1996). If equivalent computations could be
carried out using less energy, savings from these energy

efficient mechanisms could be used for other vital pro-

cesses such as growth or reproduction.

The metabolic costs of neural signalling have been

quantified on the organisms level (Rolfe & Brown,

1997), and on the neural level (Aiello & Bach-y-Rita,

2000; Ames, 2000; Attwell & Laughlin, 2001; Laughlin,

van Steveninck, & Anderson, 1998). For this article it is
useful to categorise energetic neuronal costs into three

classes; costs associated with (i) firing rates (action po-

tentials), (ii) synaptic transmission and, (iii) maintaining

neurons (see Attwell & Laughlin, 2001).

Previous theoretical work can be interpreted as

dealing with the first of these costs. The receptive fields

of neurons in V1 can be understood as forming an en-

ergy efficient representation in terms of maximising in-

formation transmission, whilst minimising average firing
rate (Baddeley, 1996). Olshausen and Field (1996), using

natural images as input, maximised information trans-

mitted whilst minimising a quantity they called sparsity

and this resulted in receptive fields that are oriented

bandpass, with quantitative similarities to V1 neuron

receptive fields (van Hateren & van der Schaaf, 1998).

One of their definitions of sparsity was the average ab-

solute firing rate. Minimising the average firing rate
whilst maximising information transmission, was found

to be sufficient to account for V1 receptive fields

(Baddeley, 1996). As well as accounting for the receptive

fields, this �minimising firing rate� proposal is consisted

with observed firing rate in V1 and IT (inferiortemporal

cortex) (Baddeley et al., 1997).

This previous work has concentrated on minimising

energy costs associated with firing rates but as stated
before, there are also costs associated with neural

maintenance and synaptic activity. Here we explore the

implications of representations that minimise costs as-

sociated with synaptic transmission, and compare the

results to the receptive fields not in V1 but in the retina.

A common framework for modelling early visual

representations is to model outputs of neurons as the

result of linear filters operating on input images (Bell &
Sejnowski, 1997; Harpur, 1997; Olshausen & Field,

1996; Srinivasan, Laughlin, & Dubs, 1982). In this

framework, the magnitude of the filter weights is equa-

ted to the synaptic connection strengths, and the filter
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outputs are equated to neuronal firing rates. It is within

this framework that we attempt to understand the

consequences of maximising information transmission

whilst minimising the metabolic costs associated with

synaptic transmission.

Following Bell and Sejnowski (1997), Harpur (1997)

and Olshausen and Field (1996), we quantify the infor-

mation transmitted in terms of the sum squared recon-
struction error. If the signal (the images) and the noise

are Gaussian, then minimising mean squared recon-

struction error maximises the information that the out-

puts provide about the inputs (Baldi & Hornik, 1995). It

is known that natural images are not Gaussian distrib-

uted, but we would propose this as a reasonable first

approximation. Note here information refers to all

variations in image intensity and does not distinguish
between potentially biological relevant variations such

as those generated by reflectance changes, and those

of less relevance such as those generated by illumina-

tion variation. Despite this, we believe this common

approximation is sufficient for the purposes of this

study.

This leaves the problem of quantifying the metabolic

cost associated with synaptic transmission. The arrival
of an action potential at a presynaptic terminal alters the

probability of vesicle release. The �stronger� the synaptic

connection the higher the release probability and the

greater the number of release sites. The neurotransmitter

within the vesicles result in hyperpolarisation or depo-

larisation of the postsynaptic potential, changing firing

probability.

In relation to metabolic costs, the major contribu-
tions are those associated with action potential trans-

mission and synaptic activation (Attwell & Laughlin,

2001), with these costs being approximately equal.

Of these costs, those associated with synaptic �strength�
will be associated with glutamate release. To a first

approximation, below saturation, ignoring sublinear

summation at high-firing rates observed, metabolic cost

will be proportional to glutamate release and hence to
synaptic strength. This leads us to quantify in our sim-

plistic model the metabolic cost of synaptic activity in

terms of the sum of the absolute strengths of the

weights.

This assumption that metabolic cost is a simple linear

function of synaptic strength is by necessity a simplifi-

cation, but we tested the robustness of our results to this

assumption, by exploring costs of the form

cost / jstrengthjP

with values of P ranging from 0.5 to 1.5. With this range

of values of P we obtain qualitatively similar results. In

the previous literature, people have explored constraints
on weights, usually not from a metabolic perspective but

simply to prevent connections from growing infinitely.

Almost without exception, constraints on the sum of the

squares of the weights (e.g. P ¼ 2) have been studied.

This constraint results in qualitatively very different re-

ceptive fields (see later) than with the metabolically in-

spired constraint on the absolute values.

Using this linear framework, optimal filters were

calculated under a constrained optimisation criteria on

total synaptic strength for a range of convergence ratios

(number of filters for a given input), energy budgets and
signal-to-noise ratios (SNRs). The resulting filters were

quantitatively modelled and compared to biological

measurements. It is shown that this simple synaptic

energy restriction is sufficient to account for many as-

pects of retinal processing.

2. Methods

The optimal filters were calculated with a modified

symmetric error correction network (Baldi & Hornik,

1995). In its unmodified form this calculates the optimal

(least squared reconstruction error) filters, for a set of M
inputs which converge on N outputs. An input sample,

denoted by the column vector x, is forward propagated

through filters W to give outputs y ¼ Wx. These are

then back propagated to compute an error signal e ¼
x�W 0y. The filters are then updated by Dw ¼ kWxðx�
W 0WxÞ0, where the learning rate k decreases over time,

in order to minimise E ¼ hð1=2Þe2i.
The form described above simply minimises the sum

squared reconstruction error. We modified this basic

model to additionally impose a constraint on the met-

abolic cost of each filter. Given our cost scheme, defined

earlier as cost / jstrengthjP , the energetic constraint is

defined as
PM

m¼1 jWn;mjP 6b 8n. This constraint is en-

forced by a mechanism that can be thought of as a form

of weight decay where all weights are moved toward

zero by a small constant amount (see Goodhill & Bar-
row, 1996; Miller & MacKay, 1994, contrast this to

more typical weight decay where weights decrease to-

ward zero in proportion to their magnitude which im-

plements a constraint on the sum of squared weights).

Formally, after every weight update of the learning rule,

the constraint Dwn ¼ �k sgnðwnÞjwnjP�1
is applied itera-

tively to each filter wn whose cost is greater than the

constraint, where k is a very small constant.
In this model, the weights used for each receptive field

are also used in the reverse direction to reconstruct the

image. Therefore the forward weights (W) are implicitly

constrained to be the transpose of the weights used for

reconstruction (W 0). This model will only accurately

reconstruct the variance of the input if the length of each

weight vector is one. One consequence of length one

weight vectors is that if the noise on the input is inde-
pendent identically distributed and Gaussian of variance

r2
noise then every output neuron will have noise equal to

r2
noise. Since this noise will be constant, maximising the
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signal (by minimising the sum squared reconstruction

error) will also maximise SNR. For Gaussian signal and

noise, maximising SNR maximises the transmitted in-

formation with information¼ð1=2Þ log2½1 þ SNR
.
The weight matrix W was initialised as random

Gaussian distributed noise with zero mean, normalised

to satisfy the energetic constraint. The input data com-

posed of 50,000 samples of size 16� 16 from van
Haterens� natural image dataset (van Hateren & van

der Schaaf, 1998). The image intensities of each image

sample were set to have zero mean but in con-

trast to Olshausen and Field (1996), inputs were not

whitened.

The receptive fields of retinal ganglion cells have

traditionally been modelled by a difference of Gaussian

function. To enable quantitative comparison, the filters
resulting from simulations were fitted with a difference

of Gaussian model DoGðdÞ ¼ kc exp½�ðd=rcÞ2
 � ks �
exp½�ðd=rsÞ2
, where d is the distance from the receptive

field centre (Enroth-Cugell & Robson, 1966). The six

parameters correspond to the radius of the centre and

the surround, rc and rs respectively and the sensitivity of

the centre and surround kc and ks respectively. In addi-

tion x, y determined the location of the centre of the
receptive field. This was done using a least squares cri-

teria. The quality of fit was assessed by the correlation

coefficient of the fit to the data.

The goal of these filters was to transmit information

under a limited synaptic budget. The performance of a

set of filters in transmitting information was measured

by the inverse of the mean squared error of recon-

struction p ¼ hð1=2Þe2i�1
, over 50,000 image samples.

To take into account the effect of different synaptic

budgets, we defined an efficiency measure. Here effi-

ciency was defined as performance p divided by total

cost which is the budget per filter multiplied by the

number of filters bN . This gives us efficiency¼ p=bN .

To calculate filters in the presence of noise, the filters

were optimised to reconstruct images given noise-cor-

rupted inputs. The only change in the calculation of
the filters was the calculation of the outputs with y ¼
Wðxþ gÞ, where g is a vector of zero-mean Gaussian

distributed noise with variance set so rðxÞ=rðgÞ ¼ SNR.

The contrast sensitivity functions of Fig. 4 were calcu-

lated with Enroth-Cugell and Robson (1966, Eq. (9)).

The parameters used in this equation were estimated

from the best fitting difference of Gaussian filters fit to

simulations where M ¼ 162, N ¼ 64, and b ¼ 4.

3. Results

The benefits of synaptic efficiency would be lost if the
filters were unable to encode visual information. To

confirm that filters with lower energy budgets were ca-

pable of capturing visual information, performance was

measured (see Section 2). Filters with an unlimited

budget had the highest performance, but this high per-

formance can be maintained under relatively lower en-

ergy budgets (see Fig. 1a). Below a certain point

however, errors increase rapidly. The results suggest that

the centre surround solution is the best balance between

energy efficiency and performance.
A compromise between energy efficiency and recon-

struction performance leads to a specific prediction of

the optimal umber of units to use for a given energy

budget. Fig. 1b shows that when the energy budget is

low, it is most efficient to use a low number of neurons.

As the energy budget increases, greater efficiency will be

obtained by using more output units.
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Fig. 1. Performance of filters. Performance of filters under different

energy budgets is shown in (a). Both budgets and error are relative to

an unconstrained set of filters. Very high performance can be main-

tained under low-synaptic budgets. Centre surround filters represent

the best compromise between performance and synaptic budget. The

model can produce filters with very low-performance decreases under

very tight energy budgets. With 100 outputs, even at a 75% drop in

energy budget, the error is only 17% greater than the lowest possible

error. The regions labelled denote the general type of filter produced

with a certain energy budget. Each curve in (b) shows the efficiencies

for a given energy budget. For a low-energy budget (d) it is more

efficient to use a few output units. As the energy budget increases (�)

to (�) it is more efficient to use more output units.
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With very low-energy budgets, the filters consist of a
Gaussian like centre component. With a wide range of

energy budgets above this, the filters have a centre sur-

round organisation (see Fig. 2a). At the top end of this

range, filters had additional excitatory and inhibitory

surrounds, an effect reported in the retina (Ikeda &

Write, 1972). With unconstrained budgets filters were

global (see Fig. 2b) and in this condition the filters span

the same space as principal component (Harpur, 1997).
In the low-energy region which results in centre sur-

round receptive fields the filters are well approximated

by a difference of Gaussian model. This is shown both

by the high correlation between the filters and their fits

ðR ¼ 0:92Þ, and can be seen visually in Fig. 3.

A comparison of receptive field coverage showed

similarities to the mosaic organization of retinal gan-

glion cells. The receptive field centres were irregularly
organized but were approximately evenly spaced (see

Fig. 4). This can be quantified in terms of spacing ratios

(Devries & Baylor, 1997), the distance between receptive

field centres, divided by the sum of the centre standard

deviations (s ¼ d=ðr1 þ r2Þ, where rn is the standard de-

viation radius of filter n). For one class of ganglion cells

the mean spacing ratio was 0.98 and mean 1.21 for a

second. This compares favourably to a set of filters

(mean¼ 1.15, std¼ 0.11) with M ¼ 162, N ¼ 100, b ¼ 5.

Similar results were found for other convergence ratios.

Filters were calculated for a variety of convergence

ratios and were generally consistent with observations of
the retina. The optimal filters when the number of inputs

and outputs are equal (N ¼ M) consisted of individual

pixels which corresponds to the 1:1 connections between

photoreceptors and ganglion cells (Yamada, Silveira,

Perry, & Franco, 2001). These foveal filters had the

highest performance and efficiency. Peripheral regions

of the retina are approximated as the convergence ratio

Fig. 2. Constrained and unconstrained filterbanks. A representative

set 49 filters (with 16� 16 input) is shown in (a) which have the energy

budget b ¼ 4. They demonstrate the localized centre surround orga-

nization. The filters that result with an unconstrained energy budget

(b) are very different. They are non-localised and span the principal

component subspace.

Fig. 3. Difference of Gaussian fits to the filters. The uppermost graph

shows the average receptive field and the best fitting difference of

Gaussian. The data points are the connection strengths (in 0.2 pixel

windows) as a function of distance from the centre of the receptive

field, error bars are standard error. The lower figures show fits to in-

dividual receptive fields. Data points are again connection strength as a

function of distance (and hence the number of data points increase

with distance from the centre), and the line is the difference of

Gaussian fit. As can be seen a difference of Gaussians provides a good

fit both to the average filter (R ¼ 0:92) and the individual filters.
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increases. The resulting filters were coherent with bio-

logical observations of ganglion cells at different eccen-
tricities. Filters become centre surround and increase in

size in more peripheral regions (see Fig. 5).

A comparison between average X and Y retinal

ganglion cells (Enroth-Cugell & Robson, 1966) and

difference of Gaussian fits to the models receptive fields

was made. Fig. 6 shows this comparison, fits to average

Y cells were very close and fits to average X cells were

reasonable. However, our model failed to produce filters

which adequately captured the high-relative surround

radius of the X cell (ks=kc ¼ 4); the fit shown has a rel-

ative surround radius of 1.95.

An important feature of retinal ganglion cells is their

DC response. This describes responses to the level of

illumination and is a key feature of ganglion cells (En-

roth-Cugell & Robson, 1966; Linsenmeier et al., 1982).

All filters calculated with a variety of energy budgets
and convergence ratios had positive DC. This is of rel-

evance to image coding because it implies that retinal

ganglion cells do not do full redundancy reduction, nor

respond only to edges.

An important aspect of retinal processing is how re-

ceptive fields alter over different luminance levels. As

light levels decrease, the signal decreases and thus SNR

decreases. One way of characterising receptive fields is
by its contrast sensitivity function and for real neurons,

this changes as a function of SNR. The optimal filters

and corresponding contrast sensitivity function exhibit

the same dependence on SNR as biological neurons (see

Fig. 7; Barlow, Fitzhugh, & Kuffler, 1957; Enroth-

Cugell & Robson, 1966). When there is no noise, the

filters have the band pass characteristic caused by the

inhibitory surround. As the level of noise increases, this
disappears and gives way to a low-pass characteristic. In

addition, filters become insensitive to the higher spatial

frequencies due to a slightly increased centre radius.

This dependence of contrast sensitivity function on SNR

is not a unique prediction of this model (see Table 1),

but despite the simplicity of the model, observed chan-

ges with SNR are the same as in the retina.

4. Discussion

Optimal filters that encode natural images under a

simple synaptic energy constraint demonstrate many

features present in retinal ganglion cells. The quantita-

tive properties of centre surround organization at a
range of eccentricities and SNRs, in addition to the

positive DC and mosaic organization of retinal ganglion

cells have resulted from this energetically inspired

model.
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Fig. 4. Mosaic structure of filters with M ¼ 24, N ¼ 100, b ¼ 5. (a)

Shows a plot of receptive field locations. Each filter is represented by

two circles, with the central circle corresponding to centre radius and

the outer circle the surround radius. This is quantified in terms of

spacing ratios (see text). (b) Shows a histogram of spacing ratios and

the mean ratio is consistent with that observed for the retina.

Fig. 5. This figure shows predicted receptive fields at different retinal eccentricities. Foveal regions are represented by a 1:1 convergence ratio (left)

and receptive fields consist of a single excitatory connection with no surround. More peripheral regions are denoted by higher convergence ratios

(right). Receptive fields consist of a surround region and become larger at more peripheral regions. Plots show the average of a difference of Gaussian

fit to filters with M ¼ 162 and Nb ¼ M .
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Why do the optimal filters have an antagonistic sur-

round? The filters become local because the weight

constraint acts to set many weights to zero and because

of the autocorrelation function of the image dataset. Due

to the error minimisation, these overlapping weights tend

to be as orthogonal as possible and the absolute values of

all weights per input to have an equal sum. So the sur-

round regions develop as a balance between the filters

trying to be orthogonal and the weight constraint.

Two assumptions have been made with synaptic ef-

ficiency. Firstly that each connection works under the

same cost scheme. It is possible that excitatory and in-
hibitory connections incur different costs, however, we

propose that this homogeneous costing is a reasonable

approximation to make for this initial investigation. The

second assumption is that metabolic cost is a linear

function of synaptic efficacy, which is a reasonable

starting point. The parameter P was used to alter the

non-linearity, similar results were achieved using values

of P other than one so the centre surround solution to
this problem is fairly robust as long as P is close to one.

Here we have interpreted our constraint within the

metabolic framework, but it is also possible to under-

stand it in terms of the more common ‘‘sparsity’’

framework (Field, 1994). By placing a constraint on the

sum of absolute weight values (our energy constraint),

and the second constraint on weights being length one

(see Section 2), we are enforcing measure of sparsity
which is more robust than other measure such as kur-

tosis. Therefore it is possible to understand the results as

the implications of imposing a robust sparsity constraint

not on the outputs of neurons, but on the weights.

Many models of retinal processing seek to explain

which computational principal the retina is using. A

comparison of previous models is made in Table 1 and

are reviewed in Burton (1999). Predictive coding (Srin-
ivasan et al., 1982) describes the inhibitory region (both

spatial and temporal) very well over a range of SNRs.

However, filters are zero DC and do not fully explain the

central region. Collective coding (Tsukamoto, Smith, &

Sterling, 1990) can account for a dome-shaped central

region as the optimal solution to maximize SNR in-

crease between photoreceptors and retinal ganglion cells

but does not account for the surround. Atick and
Redlich (1990, 1995), Haft and van Hemmen (1998) and

van Hateren (1993a, 1993b) account for the centre

and surround over SNRs, but explicitly impose locality

so aspects such as the sampling mosaic are not ad-

dressable. No single alternative model fully explains all

aspects of retinal processing (but this may well be be-

cause these aspects were not addressed rather than being

fundamentally inexplicable).
The concept of efficient neural coding is not new,

however, the formulation in terms of cost of neurons,

action potentials, synaptic activity and wiring is rela-

tively recent (Baddeley, 1996; Cherniak, 1995; Laughlin,

2001; Laughlin et al., 1998). The approach used in this

paper is not specific to the spatial processing of the

retina, and could be extended to account for spatio-

temporal processing in the retina and to other sensory

(a) (b)

Fig. 7. The effect of noise on filters. With no noise filters consist of a

centre and surround which gives rise to the band pass characteristic (––).

As the SNR decreases, the surround diminished in strength and the

centre increases in size slightly. This leads to decreased band pass

characteristics and decreases sensitivity at high-spatial frequencies re-

spectively (- - -). At very low SNRs, the surround is absent, leaving a

low-pass filter (� � �). The units on the axes are arbitrary.

average X cell

M=162, N=49, β=3.9

average Y cell
M=16 2, N=100, β=5

Fig. 6. Comparing model receptive fields to average X and Y retinal

ganglion cells. These plots show the average X and Y cells (Lins-

enmeier, Frishman, Jakiela, & Enroth-Cugel, 1982) (solid lines) and

difference of Gaussian fits to model filters (dotted lines) with simula-

tion parameters shown in the legends. The top plot shows that our

model achieves a reasonable fit to the average X cell, but fails to

capture the full size of the surround. The bottom plot shows high

similarity between the average Y cell and our model.
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modalities such as spectro-temporal processing in the

auditory system. Lots of work has explored sparse

coding in the visual cortex (Hoyer & Hyvarinen, 2000;

Hyvarinen & Hoyer, 2001a, 2001b, 2001c; Olshausen &

Field, 1996; van Hateren & Ruderman, 1998; van Hat-

eren & van der Schaaf, 1998). These results should be

interpretable in terms of energy efficient coding.

It is argued here that V1 receptive fields could be
interpreted in terms of a constraint on mean firing rates

(Baddeley, 1996; Levy & Baxter, 1996), and retinal codes

in terms of a synaptic constraint. Why should this be?

The answer may lie in the number of neurons in the

retina and V1. Because there are only �1 million retinal

ganglion cells per eye, codes that constrain firing rates

may yield few savings and hinder the accuracy of the

�100:1 compressed data. This leaves connection costs
for potential savings. In the cortex however, sheer neu-

ron numbers means massive savings could be made

by having only a small proportion of neurons strongly

active, in addition this massive divergence suggests that

coding performance would not be hindered.

In conclusion this paper presents optimal filters de-

signed to capture visual information with efficient use of

synaptic resources. These filters have strong similarities
to the receptive fields of X and Y ganglion cells. It was

found that a constraint on synaptic efficiency was able

to account for many properties of retinal ganglion cells,

such as the centre surround mechanism, and how this

alters over retinal eccentricity, and SNRs. This simple

synaptic efficiency combined with cortical sparsification

provides a common energy efficiency approach that can

explain many aspects of retinal and cortical level pro-
cessing in the visual system.
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